Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
When experimentally learning the action of a continuous-variable quantum process by probing it with inputs, there will often be some restriction on the input states used. One experimentally simple way to probe a quantum channel is to use low-energy coherent states. Learning a quantum channel in this way presents difficulties, due to the fact that two channels may act similarly on low-energy inputs but very differently for high-energy inputs. They may also act similarly on coherent-state inputs but differently on nonclassical inputs. Extrapolating the behavior of a channel for more general input states from its action on the far more limited set of low-energy coherent states is a case of out-of-distribution generalization. To be sure that such generalization gives meaningful results, one needs to relate error bounds for the training set to bounds that are valid for all inputs. We show that for any pair of channels that act sufficiently similarly on low-energy coherent-state inputs, one can bound how different the input-output relations are for any (high-energy or highly nonclassical) input. This proves that out-of-distribution generalization is always possible for learning quantum channels using low-energy coherent states, as long as enough samples are used.more » « lessFree, publicly-accessible full text available October 1, 2026
-
A quantum transducer converts an input signal to an output probe at a distant frequency band while maintaining the quantum information with high fidelity, which is crucial for quantum networking and distributed quantum sensing and computing. In terms of microwave–optical quantum transduction, the state-of-the-art quantum transducers suffer low transduction efficiency from weak nonlinear coupling, wherein increasing pump power to enhance efficiency inevitably leads to thermal noise from heating. Moreover, we reveal that the efficiency-bandwidth product of a cavity electro-optical or electro-optomechanical transducer is fundamentally limited by pump power and nonlinear coupling coefficient, irrespective of cavity engineering efforts. To overcome this fundamental limit, we propose to noiselessly boost the transduction efficiency by consuming intraband entanglement (e.g., microwave–microwave or optical–optical entanglement in the case of microwave–optical transduction). Via a squeezer–coupler–antisqueezer sandwich structure, the protocol enhances the transduction efficiency to unity in the ideal lossless case, given an arbitrarily weak pump and nonlinear coupling. In practical cavity systems, our entanglement-assisted protocol surpasses the non-assisted fundamental limit of the efficiency-bandwidth product and reduces the threshold cooperativity for positive quantum capacity by a factor proportional to two-mode squeezing gain. Given a fixed cooperativity, our approach increases the broadband quantum capacity by orders of magnitude. The entanglement-assisted advantage is robust to ancilla loss and cavity detuning.more » « less
-
Abstract Bosonic variational quantum circuits (VQCs) are crucial for information processing in microwave cavities, trapped ions, and optical systems, widely applicable in quantum communication, sensing and error correction. The trainability of such VQCs is less understood, hindered by the lack of theoretical tools such ast-design due to the infinite dimension of the continuous-variable systems involved. We overcome this difficulty to reveal an energy-dependent barren plateau in such VQCs. The variance of the gradient decays as , exponential in the number of modesMbut polynomial in the (per-mode) circuit energyE. The exponentν = 1 for shallow circuits andν = 2 for deep circuits. We prove these results for state preparation of general Gaussian states and number states. We also provide numerical evidence demonstrating that the results extend to general state preparation tasks. As circuit energy is a controllable parameter, we provide a strategy to mitigate the barren plateau in bosonic continuous-variable VQCs.more » « less
-
Recent advancements in multi-mode Gottesman-Kitaev-Preskill (GKP) codes have shown great promise in enhancing the protection of both discrete and analog quantum information. This broadened range of protection brings opportunities beyond quantum computing to benefit quantum sensing by safeguarding squeezing — the essential resource in many quantum metrology protocols. However, the potential for quantum sensing to benefit quantum error correction has been less explored. In this work, we provide a unique example where techniques from quantum sensing can be applied to improve multi-mode GKP codes. Inspired by distributed quantum sensing, we propose the distributed two-mode squeezing (dtms) GKP codes that offer benefits in error correction with minimal active encoding operations. Indeed, the proposed codes rely on a (active) two-mode squeezing element and an array of beamsplitters that effectively distributes continuous-variable correlations to many GKP ancillae, similar to continuous-variable distributed quantum sensing. Despite this simple construction, the code distance achievable with dtms-GKP qubit codes is comparable to previous results obtained through brute-force numerical search \cite{lin2023closest}. Moreover, these codes enable analog noise suppression beyond that of the best-known two-mode codes \cite{noh2020o2o} without requiring an additional squeezer. We also provide a simple two-stage decoder for the proposed codes, which appears near-optimal for the case of two modes and permits analytical evaluation.more » « less
An official website of the United States government
